
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

Kokkos: Present and Future
Christian R. Trott, - Center for Computing Research

Sandia National Laboratories/NM

Unclassified Unlimited Release

SAND2020-9180 C

Transitioning To Community Project

Kokkos Core: C.R. Trott, N. Ellingwood, D. Ibanez, J. Miles, D. Hollman, V. Dang, Jan Ciesko, J. Wilke, L. Cannada,

H. Finkel, N. Liber, D. Lebrun-Grandie, B. Turcksin, J. Madsen, D. Arndt, J. Madsen, R. Gayatri

former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova, D. Sunderland,

Kokkos Kernels: S. Rajamanickam, L. Berger, V. Dang, N. Ellingwood, E. Harvey, B. Kelley, K. Kim, C.R. Trott, J. Wilke, S. Acer

Kokkos Tools: D. Poliakoff, S. Hammond, C.R. Trott, D. Ibanez, S. Moore, L. Cannada

Kokkos Support: C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter

§ Core: 15 Developers (8 SNL)

§ More code contributions from non-SNL

§ >50% of code reviews by ORNL

§ >50% of commits from non-Sandians

§ Sandia leads API design

§ Other labs lead backend implementations

Kokkos Uptake
ECP Critical Dependencies

0

100

200

300

400

17 18 19 20 21

Total membership

Weekly active members

• 440 registered users
• 70 Institutions
• Every continent

• (-Antarctica)
• Doubles every year

SNL

DOE
(not
SNL)

Unive
rsities

Other

Kokkos Slack Users

MPI 60
LLVM 53
C++ 41
OpenMP 33
CUDA 22
HDF5 19
LAPACK 19
Kokkos 18
Fortran 17
BLAS 16
C 14
ALPINE 12

hypre 11
Trilinos 10
DAV-SDK 9
ADIOS 8
VTK-m 8
FFT 7
Spack 7
OpenACC 6
MPI-IO 6
PnetCDF 6
zfp 5
SUNDIALS 5

• Primary development at ORNL

• Many Capabilities ready

• Some Hierarchical parallelism is waiting for

compiler bugs

• PR testing for Kokkos on AMD GPUs in place

• ArborX, Cabana, LAMMPS (partially) working

• DPC++ blocked by compiler

• Working with Intel on it

• OpenMP 5.0 similar state as HIP

Frontier/El Capitan: HIP

Kokkos 3.3 (Nov 2020): OpenMP 5 and HIP expected to be largely feature complete

Aurora: DPC++ and OpenMP 5.0

Exascale Readiness

Updates: Training Material
§ Developed The Kokkos Lectures

§ 8 lectures covering most
aspects of Kokkos

§ 14 hours of recordings
§ > 500 slides
§ >20 exercises

§ Hosted by ECP
§ Module 8 this Friday

• Module 1: Introduction
• Introduction, Basic Parallelism, Build System

• Module 2: Views and Spaces
• Execution and Memory Spaces, Data Layout

• Module 3: Data Structures and MDRangePolicy
• Tightly Nested Loops, Subviews, ScatterView,…

• Module 4: Hierarchical Parallelism
• Nested Parallelism, Scratch Pads, Unique Token

• Module 5: Advanced Optimizations
• Streams, Tasking and SIMD

• Module 6: Language Interoperability
• Fortran, Python, MPI and PGAS

• Module 7: Tools
• Profiling, Tuning , Debugging, Static Analysis

• Module 8: Kokkos Kernels
• Dense LA, Sparse LA, Solvers, Graph Kernels

https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series

https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series

Updates: Remote Spaces and Tooling

§ Remote Spaces beta now released

§ https://github.com/kokkos/kokkos-remote-spaces

§ Support for NVSHMEM, MPI, SHMEM

§ Working on Caching, aggregation etc.

§ Potentially huge productivity benefits

§ Tools Support is growing

§ More Native support e.g. Tau

§ Connectors to Timemory etc.

§ Nsight Systems does more useful
stuff with connectors

§ Rename Kernels

https://github.com/kokkos/kokkos-remote-spaces

New Capabilities: Auto Tuning
§ Part of Kokkos 3.2 (released last week)
§ Tuning Interface + Tools

§ Same as other hooks: they are always there,
but act as no-ops without a tool

§ Multi Input – multi Output tuning
§ Inputs describe problem space
§ OutputTypes describe search space

§ Sets, Ranges, Categorical
§ Logarithmic, linear

§ Tuning scopes can include multiple kernels
§ Tuning of internal variables in 3.3 or 3.4

Apollo Tuner for SPMV tuning:
• Rows per team
• Team Size
• Vector Length

New Capabilities: Static Analysis
§ Can we catch violations of Kokkos semantics even if code would compile/run?

§ kokkos-llvm: fork of LLVM with Kokkos aware clang-tidy variant
§ Three types of violating patterns:

§ compile with some backends but not others.
§ run correct with some backends but crash on others.
§ run correct with some backends but have wrong results with others!

void fooOOPS(int i) { printf("%i\n", i); }

int main(int argc, char **argv) {
Kokkos::initialize();
Kokkos::parallel_for(15, KOKKOS_LAMBDA(int i) {
fooOOPS(i);

});
Kokkos::finalize();

}

>clang-tidy -checks=-*,kokkos-* file.cpp
<main.cpp:7:5> warning: Function ’fooOOPS’ called in
a lambda was missing KOKKOS_X_FUNCTION annotation.
fooOOPS(i);
^
<main.cpp:2:1> note: Function ’fooOOPS’ was delcared here
void fooOOPS(int i) { printf("%i\n", i); }

Example: Missing function markup

Upcoming Capabilities: Graph Interface
§ Build static graphs of kernels

§ Can use CUDAGraphs as backend
§ Allows repeated dispatch

§ Helps with Latency Limited codes
§ Cuts down on launch latency
§ Can leverage streams to overlap

work
§ Infers overlapping from

dependencies
§ Prototype release planned as part of

Kokkos 3.3 (November)

const auto graph = Kokkos::Experimental::create_graph(
[=](auto builder) {
auto root = builder.get_root();
auto f1 = root.then_parallel_for(
Kokkos::RangePolicy<>(0, 1), KOKKOS_LAMBDA(long) {…});

auto f2a = f1.then_parallel_for(
Kokkos::RangePolicy<>(0, 1), KOKKOS_LAMBDA(long) {…});

auto f2b = f1.then_parallel_for(
Kokkos::RangePolicy<>(0, 1), KOKKOS_LAMBDA(long) {…});

builder.when_all(f2, f3).then_parallel_for(
Kokkos::RangePolicy<>(0, 1), KOKKOS_LAMBDA(long) {…});

});

for (int i = 0; i < repeats; ++i) {
graph.submit();
graph.get_execution_space().fence();

}

f1

f2a f2b

f3

